Cette deuxième partie montre comment les méthodes de simple et double fausse position ont permis de résoudre des équations du premier degré et des systèmes linéaires indéterminés. La méthode de double fausse position pour la résolution d’équations du premier degré est abordée à travers un texte en latin du juif espagnol Abraham ibn Ezra (XIIe siècle), et comparée à des résolutions similaires en Chine et dans le monde arabe. D’autres méthodes sont analysées en parcourant quelques chapitres du Liber Abaci de Leonardo Fibonacci (XIIIe siècle). On y découvre aussi les algorithmes qui conduisent à la résolution générale de l’équation du second degré, précisément décrits et justifiés dans l’ouvrage d’al Khwarizmi (IXe siècle), considéré comme le texte fondateur de l’algèbre. Une telle approche éclaire les contenus du cours d’algèbre en situant l’émergence des concepts et leur développement dans un contexte culturel.
accessibilityEnseignants de mathématiques, de sciences, d’histoire, de langues anciennes… de l’enseignement secondaire.